Azure DevOps YAML CI/CD
pipelines - praktické ukazky

Jan Vilimek

Principal Software Engineer @ Oriflame
Jan@vilimek.cz

W @vilimekJan

mailto:jan@vilimek.cz

Motivation

= Last time | have talked mostly in front of the presentation
= This time we would go more deep
= We will see lot's of code, so brace yourselves!

https://www.wug.cz/online/akce/1366-Azure-DevOps-YAML-CI-CD-pipelines-realne-zkusenosti

Agenda

1. Brief introduction to CI/CD idea

2. Code examples
1. "simple” CI

2. "simple” CD

3. Cl/CD pipeline shared

4. Calling it

5. (if time) setting up a new project
6. (if time) pipeline secrets

7. (if time) GitHub actions migration

Brief introduction to ClI/CD idea

About CI/CD pipelines

= Cl/CD: continuous integration and deployment

\ After a merge, deployment is triggered]

Before we can merge:
N « Code review is done

Isolated development of a feature « CI Build is triggered

integration branch

feature/xy

= Needs to be fully automated
— Triggered via pull request, push

= Clis about build, unit tests
= CD is about deployment (pushing/deploying package)

BRANCH . Commit _> Branch/PR + merge

Oriflame Micro-Service development lifecycle

= Focused on micro service&frontend development
— ~60 microservices
- ~50 single page application & components

= Reason: to align teams and to provide a clear process

= (full) implementation in progress

Oriflame Micro-Service development lifecycle

adhoc container/agent runtime (Checks during PR)
« Deterministic state I
e e.g.inMemory DB " Code review |
« no dependencies | - - = -
« test of critical use « Static Code Analysis (SonarCloud) D 0 p BI p t M Z (F E& B E) | f y I
ot of el , evOps Blueprint Micro-services ifecycle
« Build (compilation) -> package I
] —
" Unit tests (nunit/jest) 1 1 [
* « Integration tests of runtime) | | Depk)y onIy when
N : ‘ Production Ready Code
\ VTS]
DEV environment for service/SPA | UAT / integration environment STG / pre-live environment LIVE environment
Pull request |)) ’
« no dependecies to other « integration with other services « keep it aligned with LIVE as « fail fast: detect issues early,
services | « real resources much as possible fix fast strategy
« real resources (e.g. DB, 1 « production ready code « if regression test fails. fix fast « Blue/Green & rolling update
storage account...) 1 « test all of the use cases or rollback previous version deployment
« test of most of the use cases possible After 1-2 days « if everything green: deploy to A.S.A.P.
possible | « if OK. wait ~1-2 days fill next LIVE asap
Feature branch “> Default source trunk « using/testing client mocks phase 3
p (e.g. feature/new-api) t (e.g. main branch) W_’ ‘ 3 .
- 4 -
(Checks after deployment] Checks after deployment \ Checks after deployment B Checks after deployment)
|
& Eunctional tests of new features 1 « Functional test of new features «” Regression tests of new features «” Regression test of new features
])))
« Automatediregression tests \ L,/ Automated/regression tests «" Automated/regression tests « Automated/regression tests
I
1 : Regular (at least twice a day) checks] Regular (at least twice a day) checks Regular (at least twice a day) checks
] l" Automated/regression tests J \V Automated/regression tests) « Automated/regression tests
1
|
L}
|
I
I v03

Let's deep dive to the code

https://dev.azure.com/pipeline-examples/overview

https://dev.azure.com/pipeline-examples/overview

Notes

= Azure DevOps experience for free projects ®
- Agents
— Forks
= Security
— Some patterns in the examples, but not fully ready
— Ideally no “dev” code execution in the deploy pipeline
— Approvals: great but time consuming

Self hosted vs azure hosted pipelines
= Self hosted

- © May re-use tools & package etc caches
- ® May be slower when downloading/using resources

- © ® Local network access (potential security attack vector)
- © more deterministic state

- ® you need to patch, upgrade tools,...
= Azure hosted
- ® Not much cores/mem
- ® © Every time from scratch (“cache” task may help)
- © no need to take care about OS patches, tools...
— ® unpredictive issues because of patches/issues in tools

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/utility/cache?view=azure-devops

That's all folks, thank you!

Jan Vilimek

Principal Software Engineer @ Oriflame
Jan@vilimek.cz

W @vilimekJan

mailto:jan@vilimek.cz

