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Motivation

= Last time | have talked mostly in front of the presentation
= This time we would go more deep
= We will see lot's of code, so brace yourselves!



https://www.wug.cz/online/akce/1366-Azure-DevOps-YAML-CI-CD-pipelines-realne-zkusenosti

Agenda

1. Brief introduction to CI/CD idea

2. Code examples
1. "simple” CI

2. "simple” CD

3. Cl/CD pipeline shared

4. Calling it

5. (if time) setting up a new project
6. (if time) pipeline secrets

7. (if time) GitHub actions migration



Brief introduction to ClI/CD idea



About CI/CD pipelines

= Cl/CD: continuous integration and deployment

\ After a merge, deployment is triggered ]

Before we can merge:
N « Code review is done

Isolated development of a feature « CI Build is triggered

integration branch

feature/xy

= Needs to be fully automated
— Triggered via pull request, push

= Clis about build, unit tests
= CD is about deployment (pushing/deploying package)

BRANCH . Commit _> Branch/PR + merge



Oriflame Micro-Service development lifecycle

= Focused on micro service&frontend development
— ~60 microservices
- ~50 single page application & components

= Reason: to align teams and to provide a clear process

= (full) implementation in progress



Oriflame Micro-Service development lifecycle
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Let's deep dive to the code

https://dev.azure.com/pipeline-examples/overview



https://dev.azure.com/pipeline-examples/overview

Notes

= Azure DevOps experience for free projects ®
- Agents
— Forks
= Security
— Some patterns in the examples, but not fully ready
— Ideally no “dev” code execution in the deploy pipeline
— Approvals: great but time consuming



Self hosted vs azure hosted pipelines
= Self hosted

- © May re-use tools & package etc caches
- ® May be slower when downloading/using resources

- © ® Local network access (potential security attack vector)
- © more deterministic state

- ® you need to patch, upgrade tools,...
= Azure hosted
- ® Not much cores/mem
- ® © Every time from scratch (“cache” task may help)
- © no need to take care about OS patches, tools...
— ® unpredictive issues because of patches/issues in tools


https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/utility/cache?view=azure-devops

That's all folks, thank you!
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