
Azure DevOps YAML CI/CD 

pipelines – real experiences

Jan Vilímek

Backend Architecture Lead @ Oriflame

jan@vilimek.cz

@vilimekJan

mailto:jan@vilimek.cz


Motivation

▪ In Oriflame, we have been using Microsoft Azure DevOps for CI/CD 

(continuous integration/deployment) for several years for projects 

where about 200 engineers cooperate.

▪ We would like to share our experiences working with YAML 

pipelines that cover most of our needs.

▪ Why you should love them?

▪ What to rather avoid?



Agenda

1. Brief introduction to CI/CD pipelines

2. Current situation in Oriflame

3. Let’s talk about YAML pipelines

4. What worked well for us



Brief introduction to CI/CD pipelines



About CI/CD pipelines

▪ CI/CD: continuous integration and deployment

▪ Needs to be fully automated
− Triggered via pull request, push

▪ CI is about build, unit tests

▪ CD is about deployment (pushing/deploying package)

integration branch

feature/xy

Commit Branch/PR + mergeBRANCH

Before we can merge:

• Code review is done

• CI Build is triggeredIsolated development of a feature

After a merge, deployment is triggered



Example of CI/CD flow

https://www.weave.works/blog/automate-kubernetes-with-gitops


Current situation in Oriflame



In Oriflame, we are using YAML pipelines

▪ We were using „classic“ Azure DevOps pipelines

− Nice presentation by Tomáš Herceg (Azure DevOps Automatické Buildy a 

releasy, 2020/02/11 WUG)

▪ These were not good enough for us

▪ Why? Let me explain on the following slides

https://wug.cz/zaznamy/594-Azure-DevOps-Automaticke-buildy-a-releasy


Current projects

▪ eCommerce monolith (.NET + SQL Azure backend + Storage +…)
− 12 teams

− DEV, UAT, STG, PAT, LIVE environments

− 8 regions x 4 roles (IaaS) ~ 50 servers per environment

▪ ~40 microservices
− .NET core (most of it)

− mix of Azure Kubernetes (AKS) and App Services

− SQL Azure, Cosmos DB, Azure Storage, REDIS,…

▪ ~50 single page application & components
− Typescript; mix of tools including webpack, parcel, babel, …

▪ ~100 npm & NuGet packages



Current tools

▪ Azure DevOps

− Project per domain / service (~90)

− Repository per service / package (at least 1 pipeline)

− In total ~200 pipelines

▪ 99% repositories in Git

▪ Package published to Azure Artifacts + Container Registry

▪ Pipeline Agents

− Both hosted + self-hosted

http://dev.azure.com/
https://azure.microsoft.com/en-us/services/devops/repos/
https://azure.microsoft.com/en-us/services/devops/artifacts/
https://azure.microsoft.com/en-us/services/container-registry/


Requirements for CI/CD pipelines

▪ How to share it?

▪ How to test it?

▪ How to review changes?

▪ How to track changes / history?

▪ How to implement it?

▪ How to use it?



Let’s talk about YAML pipelines



YAML pipelines important features

▪ Next generation of “classic” pipelines since 2017, “release” 2020/04

▪ Pipeline part of the repository

▪ Versioning/history/branching/code review

▪ Sharing between projects (templates)

▪ Testable

▪ Combination of build & release (stages, jobs, steps)

▪ Easy to use samples (copy & paste)

▪ Parameters & Variables



Next generation of “classic” pipelines

▪ YAML pipelines share basic logic

− Evolving over time

▪ Can use the same steps

▪ Can not run on TFVC

▪ Similar, but not quite the same as 

GitHub Actions

https://docs.github.com/en/actions/learn-github-actions/migrating-from-azure-pipelines-to-github-actions


Pipeline part of the repository

▪ A little history:

− TFS, VSO/VSTS -> XAML, a single build pipeline

− VSTS/DevOps: new pipelines & releases

▪ 3rd party orchestrators, e.g. Octopus no TFS/Git integration

▪ Now it is part of source repo 



Versioning/history/branching/code review

▪ Since it is part of source code…

▪ …you see versions of the pipeline across history

▪ …you can isolate your work in branches (PR build validation)

▪ …you can do code review during pull request

▪ This will protect us from breaking branches not with sync with 

pipeline changes, e.g. release build



Sharing between projects (1/2)

▪ Before YAML, sharing was done via “task groups”

− Not between projects (only export/import possible)

▪ Now you can use templates from other repositories (Git/GitHub)

▪ You can even choose specific version (e.g. branch, tag…)

▪ Examples:

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops#use-other-repositories


Sharing between projects (2/2)

▪ Another approach is to do a multi-checkout

▪ Useful when you have also resources (e.g. scripts) in shared repo

▪ Example (More info: multi-repo-checkout ):

https://github.com/Oriflame/code-samples/blob/main/azure-devops-yaml-pipelines/multi-checkout.yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/repos/multi-repo-checkout?view=azure-devops


Testable

▪ You know your pipeline works ok during pull request

▪ How can you tell the same about shared templates?

▪ Answer is simple: CI builds on shared pipelines repository

Pipelines repository

Shared templates

Dummy test projects

CI pipeline

Micro service repository

Actual projects

CI pipeline

Sample CI build for templates: https://github.com/Oriflame/devops/blob/develop/ci-build.yaml

https://github.com/Oriflame/devops/blob/develop/ci-build.yaml


Combination of build & release (stages, jobs, steps)

▪ There were pipelines & releases separated

▪ Now there is only YAML ☺

▪ Pipeline anatomy: Stages -> Jobs -> Tasks

Stages & jobs typically 

run on different 

physical hosts. 

Artifacts are used to 

share outputs

Stages can have 

gates (checks), e. g. 

manual approval, 

automatic tests…



Easy to use samples

▪ Microsoft samples

▪ Simple example by Jordan Lee

▪ In Oriflame, we use boilerplates:

− It’s kind of a “sample” repository

− All you need: simple project, build&deployment pipelines, documentation, …

− Maturity check (both boilerplate and your service)

− Guidance & scripts how to setup branches (e.g. policies)

▪ A team can easily start new service/SPA/NuGet/…

▪ And they still have the possibility to change anything

https://github.com/microsoft/azure-pipelines-yaml/tree/master/templates
https://medium.com/swlh/azuredevops-sample-pipeline-f78367ae37d3


Parameters & Variables

▪ Parameters:

− Provided at runtime (start of pipeline)

− Can be type-safe (types, ranges, defaults…)

− Evaluated at start -> “dynamic” pipeline (should I include step A?)

▪ Variables:

− Provided by pipeline definition or agent (e.g. System.AccessToken)

− Can be modified (or added) via steps

− Can be used in conditions (should I execute step A?)

▪ Documentation: variables, parameters

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/runtime-parameters?view=azure-devops&tabs=script


Have we now answers for CI/CD pipelines?

▪ How to share it?

▪ How to test it?

▪ How to review changes?

▪ How to track changes / history?

▪ How to implement it?

▪ How to use it?



What worked well for us



Shared YAML templates

▪ Templates in “Pipelines” project

▪ Supported tags
− latest: always the latest build & deployment

− v1, v2, …: latest stable major version

− 1.0.0: exact version

▪ Multistage/jobs: by default, the whole pipeline referenced
− But you can choose what to run, override stages

▪ Linux and .NET core builds preferred (twice as faster)

▪ Using e.g. Gitversion task with the ability to override configuration

▪ Don’t overcomplicate parameters (instead use e.g. stages, more 
pipelines) 

https://github.com/GitTools/GitVersion


Integration to services

▪ Needs to be simple as this:

trigger: none
resources:
repositories:
- repository: pipelines
type: git
name: Pipelines/NetCoreBoilerplate
ref: refs/tags/v2

stages:
- template: templates/stages/buildStages.yml@pipelines

▪ And one manual action: select path to 

it while adding new pipeline from

Azure DevOps portal



Of course the reality is a bit more complicated



DEMO



Setup repository policies

▪ Integration/main branch protection via PR

▪ Code review of pipeline

▪ CI builds for shared pipelines

▪ Split pipelines (stages) based on concerns

− CI build

− CD for NuGet package

− CD for Docker image

− CD for AKS (GitOps) release

− Security checks

− Integrations



Caveats

▪ YAML…SPACES & TABS…oh my!

− Setup the IDE correctly or you will cry…like a lot!

▪ Anyone can modify the pipeline

− Can be “fixed” via a PR policy

▪ Easily can become complex

− Combination of template vs. runtime parameters & variables is hell

− E.g. Variable-init issue

https://github.com/Oriflame/devops/blob/feature/shared-templates-new-steps/pipelines/shared-templates/variable-init.yaml


That’s all folks, thank you!

Jan Vilímek

Backend Architecture Lead @ Oriflame

jan@vilimek.cz

@vilimekJan

mailto:jan@vilimek.cz

