Azure DevOps YAML CI/CD
pipelines — real experiences

Jan Vilimek

Backend Architecture Lead @ Oriflame
Jan@vilimek.cz

W @vilimekJan

mailto:jan@vilimek.cz

Motivation

= |In Oriflame, we have been using Microsoft Azure DevOps for CI/CD
(continuous integration/deployment) for several years for projects
where about 200 engineers cooperate.

= We would like to share our experiences working with YAML
pipelines that cover most of our needs.

= Why you should love them?
= What to rather avoid?

Agenda

1. Brief introduction to CI/CD pipelines
2. Current situation in Oriflame

3. Let’s talk about YAML pipelines

4. What worked well for us

Brief introduction to CI/CD pipelines

About CI/CD pipelines

= Cl/CD: continuous integration and deployment

\ After a merge, deployment is triggered]

N Before we can merge:
» Code review is done
ure

|solated development of a feat « CI Build is triggered

integration branch

feature/xy

= Needs to be fully automated
— Triggered via pull request, push

= Clis about build, unit tests
= CD is about deployment (pushing/deploying package)

BRANCH . Commit _> Branch/PR + merge

Example of Cl/CD flow

Code
Continuous @ change . —» build —» Image
, Git ul
Integration (] Repo
 J
Continuous Config . |
Deployment Updater G"ﬁ

.I-[- — Production

https://www.weave.works/blog/automate-kubernetes-with-gitops

Current situation in Oriflame

In Oriflame, we are using YAML pipelines

= We were using ,classic” Azure DevOps pipelines

— Nice presentation by Tomas Herceg (Azure DevOps Automatické Buildy a

releasy, 2020/02/11 WUG)
* These were not good enough for us
= Why? Let me explain on the following slides

& - > legacy » Obsolete-Ori.Common.Core-Develop-Nuget

Tasks Variables Triggers Options Retention History = Summary [Queue
Pipeline
Build pipeline
Name *
== Get sources
g Ori.Common.Legacy ¥ develop Obsolete-Ori.Common.Core-Develop-Nuget
Agentpool* () | Poolinformation | Manage (2

Agent job 1
£ Runon agent Azure Pool inside Criflame Network

Task group: Ori.Common.Legacy - build, test - Copy $(...
Ori.Common.Legacy - build, test Parameters @

This pipeline doesn't have any pipeline parameters. Create them to share the most important settings between tasks and change

them in one place.

https://wug.cz/zaznamy/594-Azure-DevOps-Automaticke-buildy-a-releasy

Current projects

= eCommerce monolith (NET + SQL Azure backend + Storage +...)
- 12 teams
— DEV, UAT, STG, PAT, LIVE environments
— 8 regions x 4 roles (laaS) ~ 50 servers per environment
= ~40 microservices
— .NET core (most of it)
— mix of Azure Kubernetes (AKS) and App Services
- SQL Azure, Cosmos DB, Azure Storage, REDIS,...
= ~50 single page application & components
— Typescript; mix of tools including webpack, parcel, babel, ...

= ~700 npm & NuGet packages

Current tools

= Azure DevOps
— Project per domain / service (~90)
— Repository per service / package (at least 1 pipeline)
— In total ~200 pipelines
= 99% repositories in Git
= Package published to Azure Artifacts + Container Registry
= Pipeline Agents
— Both hosted + self-hosted

http://dev.azure.com/
https://azure.microsoft.com/en-us/services/devops/repos/
https://azure.microsoft.com/en-us/services/devops/artifacts/
https://azure.microsoft.com/en-us/services/container-registry/

Requirements for Cl/CD pipelines

= How to share it?

= How to test it?

= How to review changes?

= How to track changes / history?
= How to implement it?

= How to use it?

Let’s talk about YAML pipelines

YAML pipelines important features

= Next generation of “classic” pipelines since 2017, “release” 2020/04
" Pipeline part of the repository

= Versioning/history/branching/code review

= Sharing between projects (templates)

= Testable

= Combination of build & release (stages, jobs, steps)

= Easy to use samples (copy & paste)

= Parameters & Variables

Next generation of “classic” pipelines

= YAML pipelines share basic logic ® tnksetngs B Vew ML @ Fomor

Evolvi ti 8
9 Copy to clipboard
= Can use the same steps sac endly v | | -
Below is a clipboard-friendly view of your selection. To copy to the clipboard, either
= right-click and choose 'Copy' from the browser's context menu or press Ctrl+C. [more
= Can not run on TFVC B —— ‘
steps:
R . o | | - task: NuGetToolInstaller@®
= Similar, but not quite the same as |
I } | inputs:
.t b t. versionSpec: 4.4.1
Azure Pipelines GitHub Actions
jobs: jobs:
- job: scripts scripts:
pool: runs-on: windows-latest
vmImage: 'windows-latest’ steps:
steps: - run: echo “This step runs in the default shell
- script: echo "This step runs in the default shell" - run: echo "This step runs in bash"
- bash: echo "This step runs in bash" shell: bash
- pwsh: Write-Host "This step runs in PowerShell Core" - run: Write-Host "This step runs in PowerShell
- task: PowerShell@2 shell: pwsh Copy to clipboard
inputs: - run: Write-Host "This step runs in PowerShell|
script: Write-Host "This step runs in PowerShell” shell: powershell /
2

https://docs.github.com/en/actions/learn-github-actions/migrating-from-azure-pipelines-to-github-actions

Pipeline part of the repository

= A little history:
- TFS, VSO/VSTS -> XAML, a single build pipeline
— VSTS/DevOps: new pipelines & releases

= 3" party orchestrators, e.g. Octopus no TFS/Git integration
u NOW |t |S pa I’t Of source I’epO & Ori.Common.Infrastructure-Yaml-CD

Run pipeline X £ master v | @ Ori.Common.Infrastructure / pipelines/CD-pipeline.yam|
Select parameters below and manually run the pipeline

Branch/tag 1 parameters:
D §° master " 2 - name: overrideAutoPushPackage
3 type: boolean
A Filter branches 4 displayname: 'Package is usually pushed when building the master branch.
5 default: false
Branches Tags Commits -
v ¥ master Default 7 resources:
Al 8 repositories:
g - repository: templates
¥ bug/platform/646459_Tenant_scope_randomly_di... 10 type: git
& feature/464053IncludeFewExplicitReferrences 1 name: online/BuildTemplates

12 ref: refs/tags/v2

Versioning/history/branching/code review

Since it is part of source code...

...you see versions of the pipeline across history

...you can isolate your work in branches (PR build validation)
...you can do code review during pull request

This will protect us from breaking branches not with sync with
pipeline changes, e.g. release build

Sharing between projects (1/2)

= Before YAML, sharing was done via “task groups”
— Not between projects (only export/import possible)

= Now you can use templates from other repositories (Git/GitHub)
= You can even choose specific version (e.g. branch, tag...)

= Examples:

1 resources:
2 repositories:
resources: 3 - repository: TemplatesRepo
repositories: 4 type: git
- repository: repository identifier 5 name: Pipelines/OriCommon
type: git 6 ref: refs/tags/v2
name: project/repository name #if in the same repo | 7
ref: refs/heads/main 8 extends:
9 template: templates/s’rcages/buildPackage.yml@TemplatesRepo

jobs:

- template: relative-repo-path/pipeline-definition.yml@repository identifier

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops#use-other-repositories

Sharing between projects (2/2)

= Another approach is to do a multi-checkout
= Useful when you have also resources (e.g. scripts) in shared repo
= Example (More info: multi-repo-checkout):

resources:
repositories:
- repository: repository_identifier
type: git
name: project/repository_name #if in the same repo can be just name of the repository

ref: refs/heads/main

jobs:
- job: job_name
pool:
vmImage: ubuntu-latest
steps:
- checkout: self # will checkout current repository

path: this-repo # relative path where to check out source code, will be '$(Agent.BuildDirectory)/this-repo’

- checkout: repository_identifier

path: other-repo

- task: PowerShell@2
inputs:
filePath: '$(Agent.BuildDirectory)/other-repo/relative-path-in-repo/script.ps1’
failonStderr: true
showWarnings: true
pwsh: true

workingDirectory: '$(Agent.BuildDirectory)/backstage-catalog-components/pipelines’

https://github.com/Oriflame/code-samples/blob/main/azure-devops-yaml-pipelines/multi-checkout.yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/repos/multi-repo-checkout?view=azure-devops

Testable

= You know your pipeline works ok during pull request
= How can you tell the same about shared templates?
= Answer iIs simple: Cl builds on shared pipelines repository

Micro service repository Pipelines repository
Cl pipeline Shared templates
<5
Actual projects Dummy test projects
7S
Cl pipeline

Sample CI build for templates: https://github.com/Oriflame/devops/blob/develop/ci-build.yaml

https://github.com/Oriflame/devops/blob/develop/ci-build.yaml

Combination of build & release (stages, jobs, steps)

= There were pipelines & releases separated
= Now there is only YAML ©
= Pipeline anatomy: Stages -> Jobs -> Tasks

@ Git Version @ Build solution @ Build docker (and pu... o Deploy (GitOps) to A... (] Deploy (GitOps) to A... o Canary deploy (GitO...
2 jobs completed 43s 1 job completed m 3s 1 job completed m 1s 1 job completed 34s 1 job completed 37s 1 job completed 33s
ET 2 artifacts = 1 artifact
[1 check passed
@ Add git tag (® Deploy (GitOps) to A... (® Canary deploy (GitO...
1 job completed 14s Skipped Skipped
/ % 0/1 checks passed
Stages & jobs typically Stages can have Retry Stage
run on different gates (checks), e. g.
phySICaI hOStS) man ual approval ’ (® Deploy (GitOps) to A... (® Canary deploy (GitO...
. . ippe ipped
Artifacts are used to automatic tests... o o
B 0/1 checks passed

share outputs
N Y -

Easy to use samples

Microsoft samples

Simple example by Jordan Lee

In Oriflame, we use boilerplates:

— It's kind of a “sample” repository

— All you need: simple project, build&deployment pipelines, documentation, ...
— Maturity check (both boilerplate and your service)

— Guidance & scripts how to setup branches (e.g. policies)

A team can easily start new service/SPA/NuGet/...
And they still have the possibility to change anything

https://github.com/microsoft/azure-pipelines-yaml/tree/master/templates
https://medium.com/swlh/azuredevops-sample-pipeline-f78367ae37d3

Pool Image

ubuntu-latest

Parameters & Variables

windows-latest
vs2017-win2016

ubuntu-latest

= Parameters:
— Provided at runtime (start of pipeline) e
— Can be type-safe (types, ranges, defaults...)

— Evaluated at start -> “"dynamic” pipeline (should I include step A?)

= Variables:
— Provided by pipeline definition or agent (e.g. System.AccessToken)
— Can be modified (or added) via steps
— Can be used in conditions (should | execute step A?)

= Documentation: variables, parameters

mac0S-10.14

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/runtime-parameters?view=azure-devops&tabs=script

Have we now answers for CI/CD pipelines?

= How to share it?

= How to test it?

= How to review changes?

= How to track changes / history?
= How to implement it?

= How to use it?

What worked well for us

Shared YAML templates

= Templates in "Pipelines” project
= Supported tags
— latest: always the latest build & deployment

- v1,v2, latest stable major version
— 1.0.0: exact version

= Multistage/jobs: by default, the whole pipeline referenced
— But you can choose what to run, override stages

= Linux and .NET core builds preferred (twice as faster)
= Using e.g. Gitversion task with the ability to override configuration

= Don't overcomplicate parameters (instead use e.g. stages, more
pipelines)

https://github.com/GitTools/GitVersion

Integration to services

= Needs to be simple as this:

trigger: none
resources
repositories
repository: pipelines
type: git
name: Pipelines/NetCoreBoilerplate
ref: refs/tags/v2
stages
template: templates/stages/buildStages.yml@pipelines

= And one manual action: select path to
it while adding new pipeline from
Azure DevOps portal

Select an existing YAML file X
Select an Azure Pipelines YAML file in any branch of the
repository.
Branch

¥ master v
Path

/tools/pipelines/Cl.yml N

Select a file from the dropdown or type in the path to your file

Ori.Fenestra.Api (2

Of course the reality is a bit more complicated

> OPEN EDITORS
“ NETCOREBOILERPLATE
>
? .vscode
> database
> docs
> src
? test
“ tools
> azure
> docker
? init
v pipelines
CD.yml|
Clyml

.dockerignore

ChangelLog.md

NuGet.config
Ori.NetCoreBoilerplate.sin
README_template.md
README.md

DEMO

Setup repository policies

= |ntegration/main branch protection via PR
= Code review of pipeline
= Cl builds for shared pipelines

= Split pipelines (stages) based on concerns
— Cl build
— CD for NuGet package
— CD for Docker image
— CD for AKS (GitOps) release
— Security checks
— Integrations

Caveats

= YAML...SPACES & TABS...oh my!

— Setup the IDE correctly or you will cry...like a lot!
= Anyone can modify the pipeline

— Can be “fixed” via a PR policy
= Easily can become complex

— Combination of template vs. runtime parameters & variables is hell
— E.g. Variable-init issue

https://github.com/Oriflame/devops/blob/feature/shared-templates-new-steps/pipelines/shared-templates/variable-init.yaml

That's all folks, thank you!

Jan Vilimek

Backend Architecture Lead @ Oriflame
Jan@vilimek.cz

W @vilimekJan

mailto:jan@vilimek.cz

