Robert Haken

software architect, HAVIT, s.r.0.
haken@havit.cz, @RobertHaken

Microsoft MVP: Development, MCT, MCSD

Working Effectively with
Legacy Code



Legacy Code

OCHUTNAVKA



Legacy Code?

,,Code without tests.” [Michael Feathers]
,Source code inherited from someone else.”
,Source code inherited from an older version of the software.”

Veskery kod, s kterym aktualne nejste spokojeni
(nebo byste alespon neméli byt).”
[Robert Haken]



Legacy Code

Non-uniform coding style
Nesrozumitelny
Malo/bez test(]

Bad Design

Code Smell



Refactoring Mindset

LEGACY: NOW:

,,D0 not touch working ,Leave the code in better

code, unless needed.” condition than you found
it.“ [The Boy Scout Rule]

Planned refactoring Refactoring as you go.



Predpoklady

Sdilené vlastnictvi kodu
Source Code Management
Continuous Integration builds + runs Tests



Refactoring Justification

Quality
Clean Code

Economics

Professionalism
Right Thing



Roslyn CodeAnalysis + baseline

DEMO



Code Analyzers

Microsoft.AnalyzerPowerPack (Roslyn Team)
System.Runtime.[CSharp.]Analyzers
StyleCop Analyzers

SonarLint [SonarQube]

V/S Perf-tip:
Tools / Options / Text Editor / Cit / Advanced / Enable solution wide analysis = OFF



Refactoring

Continuous, As you g0

Small steps

IDE/Tooling supported safe steps
Comprehension Refactoring (Rename, Extract, ...)
Podporeno testy

— Pomahaji porozumet kodu

— Guard Conditions, Contract.Requires

— Debug.Assert, InvalidOperationException, ...
— Unit-Tests

— Integration Tests



"Good" Unit Test

e automated + repeatable

* fullyisolated

 consistent in its results

* runs quickly

e full control of the unit under test (all dependencies)
* relevant tomorrow

* easytoimplement

 abletorunitatthe push of a button

* if fails => easy to detect what was expected



Poor Man'’s Testability
Extract dependant call to virtual method

DEMO



"Good" Unit Test

e automated + repeatable

* fullyisolated

 consistent in its results

* runs quickly

e full control of the unit under test (all dependencies)
* relevant tomorrow

e easytoimplement

 abletorunitatthe push of a button

* if fails => easy to detect what was expected



Mocking

DEMO



"Good" Unit Test

e automated + repeatable

* fullyisolated

 consistent in its results

* runs quickly

e full control of the unit under test (all dependencies)
* relevant tomorrow

e easytoimplement

 abletorunitatthe push of a button

* if fails => easy to detect what was expected



Dependency Injection

DEMO



Tips & Tricks

[assembly::InternalsVisibleTo(IMyTestAssembly)]

[Obsolete]

Treat Warnings as Errors

Ambient Context (ale ne ServiceLocator nebo public container!)
Service Factories

Analyze / Analyze Solution for Code Clones

Test / Analyze Code Coverage



Q&A



