
Troubleshooting SQL Server 

with Extended Events
Marek Chmel

Lead Database Administrator, SQL Team at&t Czech Republic

MVP Data Platform



SQL Profiler and SQL Trace

 SQL Trace introduced with SQL Server 6.5

 SQL Profiler introduced with SQL Server 7.0

 Basic usage

 Providing real-time insight into SQL Server Activity

 Capturing queries and their usage

 Auditing of user activity

 Capturing a baseline

 Performance troubleshooting tool



DEMO
SQL Trace and SQL Profiler



Extended Events

 Advanced event collection infrastructure introduced in SQL Server 2008

 Highly flexible implementation which allows complex configurations for event 

collection that simplify problem idenfification

 Examples

 Capture stored procedures that exceed previous max duration, CPU, or I/O values

 Identify statement timeouts/attention events

 Capturing the first N executions of an event

 Using the plan_handle and tsql_stack to capture execution plans and statement text

 Capture session-level wait statistics

 Examine details of the proportional-fill algorithm

 Watch page splits occurring



Comparing Trace and XEvents

Trace XEvents

Capture query info Capture query info

Choose what to capture Choose what to capture

Filter on different fields Filter on different fields

Multiple options for analysis Multiple options for analysis

Multiple options for collection

Flexible configuration

Tracing newer features



Replacing SQL Trace

 The implementation of SQL Trace limited its flexibility and had negative 

impacts on performance during event collection

 All events share a fixed set of data columns requiring some columns to be 

overloaded, providing different meanings for different events

 Events generate all of the data columns, even when the trace doesn’t require all of 

the data columns to be collected

 Events fire if they are turned on in the bitmap in the trace controller filtering is 

applied, but filtering is only applied after the event has fired completely

 Trace I/O providers only allow for post-collection analysis of trace data



Changes in XEvents by SQL Server 

Version

SQL Server Events in SQL Trace Events in XEvents

2008 SP4 180 255

2008R2 SP3 180 264

2012 SP3 180 646

2014 SP1 180 749

2016 180 1303



XEvent architecture

 The Extended Events engine services diagnostic data collection from the 

modules loaded in the process

 Each module loads a package of metadata into the engine that provides 

information about the events provided by the module

 Event sessions provide a functional boundary for event collection

 Events only provide state information for the point in execution that the 

event was fired, additional information can be triggered through the use of 

actions



Architecture Layout



Objects: Packages

 Packages are loaded by individual modules at runtime

 Default package0 package is loaded by the Extended Events engine and 

contains generic objects that are not specific to any single module

 E.g.: all targets, generic types, predicate comparators, and some actions

 Packages are containers that define the available objects and their definitions

 Packages are not a functional boundary of usage

 Objects from one package can be used with objects from another package

 Examples of packages: sqlservr.exe, sqlos.dll



Objects: Events

 Events correspond to well-known points in the code

 E.g. a Transact-SQL statement finished executing; a deadlock occurred

 Events deliver a basic payload of information

 The payload is defined by a (versioned) schema of information immediately 

available to the event

 Events may contain optional (customizable) data elements that are only collected 

when specified

 Events will always return all non-customizable data elements

 Events are defined using the Event Tracing for Windows (ETW) model 

(channel, keyword) to allow integration with ETW



DEMO
XEvent packages and events



Objects: Predicates and Actions

 Predicates are Boolean expressions that define the conditions required for an 

event to actually fire

 Predicates support short-circuit evaluation

 The first false evaluation prevents event from firing

 Predicates can use basic arithmetic operators, or textual comparators for 

more complex expressions

 Actions only execute after predicate evaluation determines the event will fire

 Actions execute synchronously on the thread that fired the event

 Actions collect additional state data to add to the event data

 Some actions have side effects like performing a memory dump



DEMO
Predicates and Actions



Objects: Targets

 Targets are the data consumers for Extended Events, and two targets provide 

functionality similar to what was previously available in SQL Trace:

 The ring_buffer target provides an in-memory storage location for events being 

collected

 The event_file target provides a file system storage location for events being 

collectedSynchronous and asynchronous targets exist

 Aggregating targets aggregate data based on criteria

 Event Bucketizer (providing a histogram)

 Event Counter

 Event Pairing (which matches events)



DEMO
Targets



DEMO
Using XEvents UI



Default templates

 Count Query Locks

 Counts occurrences of the sqlserver.lock_acquired event using the histogram target 
based on the query_hash action

 This template can used to identify the most lock-intensive queries for investigation 
and tuning

 Query Batch Sampling

 Collects SQL batch and RPC level statements as well as error information

 This template can be used to understand the flow of queries that are executing on 
a server and track errors back to the queries that caused them

 Events are only collected from 20% of the active sessions on the server at any given 
time

 The sampling rate can be changed by modifying the filter for the event session



Default templates

 Query Batch Tracking

 Collects all batch and RPC level statements as well as error information

 This template can used to understand the flow of queries that are executing on 

your system and track errors back to the queries that caused them

 Query Detail Sampling

 Collects detailed statement and error information

 This template can be used to track each statement that has executed on your 

system as a result of query batches or stored procedures and track errors back to 

the specific statement that caused them

 Also collects the query hash and query plan hash for every statement



Default Templates

 Query Detail Tracking

 Collects detailed statement and error information

 This template can be used to track each statement that has executed on your system as 
a result of query batches or stored procedures and track errors back to the specific 
statement that caused them

 Also collects the query hash and query plan hash for every statement

 Query Wait Statistic

 Collects internal and external wait statistics for individual query statements, batches 
and RPCs

 Collects the query hash and query plan hash for every statement it tracks.

 Events are only collected from 20% of the active sessions on the server at any given time

 The sampling rate can be changed by modifying the filter for the event session



Default Templates

 Activity Tracking

 Similar to the Default Trace that exists in the SQL Trace system

 Does not include security audit events that are in the Default Trace, which are exposed by the 
SQL Server Audit feature instead

 Connection Tracking

 Tracks connection activity for a server using the login and logout events

 Includes the connectivity_ring_buffer_recorded event to diagnose any connection problems on 
the server

 Database Log File IO Tracking

 Monitors the I/O for database log files, file_id = 2, on the server

 Tracks asynchronous I/O, database log flushes, file writes, spinlock backoffs of type 
LOGFLUSHQ and waits of type WRITELOG

 Collects raw data in a ring buffer and aggregates spinlock backoff information based on the 
input buffer (sql_text) in a histogram



Management DDLs

 CREATE EVENT SESSION

 Creates a new event session based on the events, actions, predicates, targets, and 
session options provided

 All event sessions are created in a stopped state

 ALTER EVENT SESSION

 Add or remove events and targets from an event session

 Change session configuration options for a stopped event session

 Alter the state of an event session to start or stop

 DROP EVENT SESSION

 Removes an event session from the system entirely

 Memory-resident targets are not available after an event session is dropped



Troubleshooting Scenarios

Blocking issues

 The blocked_process_report event fires based on the value configured for the 
‘blocked process threshold’ sp_configure option in the SQL Server

 XML report that contains information about the blocking and blocked 
processes in a blocking scenario for further debugging to identify and prevent 
the problem

 Setting the ‘blocked process threshold’ too low can result in excessive event 
generation

 For example, if the threshold is set at 10 seconds and a blocking scenario lasts for 
38 seconds, three blocked_process_report events will be generated (one every 10 
seconds)

 In the same example, if there are multiple blocked sessions in a blocking chain, 
each blocked session will generate a blocked_process_report event every 10 
seconds



Troubleshooting Scenarios

Recomplication issues

 The sql_statement_starting and sp_statement_starting events contain a 

‘state’ column that specifies whether the statement was recompiled during 

execution

 The state column is a mapped to the statement_starting_state map and provides 

three values: Normal, Recompiled, and Execution Plan Flush

 Recompilation causes the event to fire twice: once for state=Recompiled and once 

for state=Normal

 The sql_statement_recompile event fires for any statement-level 

recompilation in the system

 Ad hoc batches, stored procedures, and triggers are included

 The recompile_cause column is mapped to the statement_recompile_cause map 

and provides the reason the recompile occurred



Troubleshooting Scenarios

Session Wait Statistics

 Understanding the causes of waits inside SQL Server can help identify 

performance bottlenecks and potential future problems

 The wait_info and wait_info_external events fire whenever a task has to wait 

during its execution

 Predicates on the session_id global field can allow tracking waits for a specific 

session in the server, or can be used to sample all sessions on the server



Troubleshooting Scenarios

TempDB Latch Contention

 Latch contention on allocation bitmap pages in tempdb can significantly affect 
performance of SQL Server

 Page Free Space (PFS) and Shared Global Allocation Map (SGAM) are the bitmaps where 
contention can occur

 Contention on these pages occurs when tracking page allocation and deallocation with 
many small temp tables

 Increasing the number of files can reduce contention on these pages as round-robin 
allocation divides the allocations over the available files

 The latch_suspend_end event tracks when latch waits end inside of SQL Server by 
database_id, file_id, and page_id

 Using a predicate with the divides_evenly_by_int64 predicator can track contention that 
occurs on tempdb allocation pages specifically

 Bucketing the events produced with the bucketizer target simplifies identification 
of allocation bitmap contention inside of tempdb



Session End
Ing. Marek Chmel, MSc

Lead Database Administrator, Cloud, Platform, Application & Data Layer Team

mc654x@att.com or marek.chmel@technet.ms


