A

HAVIT

SOFTWARE DEVELOPMENT

Robert Haken
software & cloud architect, HAVIT, s.r.o.

haken@havit.cz, @RobertHaken, https://knowledge-base.havit.cz + .eu
Microsoft MVP: Development, MCT, MCPD: Web, MCSE: Cloud

Cloud Design Patterns

Cloud Challenges

Availability

Data Management

Design and Implementation
Messaging

Management and Monitoring
Performance and Scalability
Resiliency

Security

Credits: https://docs.microsoft.com/en-us/azure/architecture/pattems/

https://docs.microsoft.com/en-us/azure/architecture/patterns/

Management and Monitoring patterns

Ambassador
Anti-Corruption Layer
External Configuration Store
Gateway Aggregation
Gateway Offloading
Gateway Routing

Health Endpoint Monitoring
Sidecar

Strangler

Anti-Corruption Layer

Subsystem A

Microservice J

- Microservice

Data Store

)
£

- Microservice

Data Store

Data Store

Anti-Corruption
Layer

Subsystem B

Ne—

Data Store

External Configuration Store

Application

Application

Application

External
configuration
store

Local cache

a

Cloud
storage

Alternative
option Database

NET 4.7.1 - ConfigurationBuilders

<configBuilders>
<builders>
<add name="KeyVault" mode="Strict" prefix="conn_" stripPrefix="true"
clientId="MyId" clientSecret="mySecret" vaultName="MyVault"

type="Microsoft.Configuration.ConfigurationBuilders.AzureKeyVaultConfigBuilder, ..." />
<add name="MyOtherConfigBuilder" type="CustomConfigBuilders.MyOtherConfigBuilder, ..." />
</builders>
</configBuilders>

<appSettings configBuilders="KeyVault,MyOtherConfigBuilder">

<add key="Settingl" value="May Be Replaced" />

<add key="Setting2" value="May Be Removed" />

<l-- Setting3 could be added by a builder without even being declared here. -->
</appSettings>

* EnvironmentConfigBuilder —Read from environment variables
* AzureKeyVaultConfigBuilder —Read from Azure Key Vault
 UserSecretsConfigBuilder —Read from a usersecrets file on disk
 SimpleJsonConfigBuilder —Read from a JSON file

https://www.nuget.org/packages/Microsoft.Configuration.ConfigurationBuilders.Environment/
https://www.nuget.org/packages/Microsoft.Configuration.ConfigurationBuilders.Azure/
https://www.nuget.org/packages/Microsoft.Configuration.ConfigurationBuilders.UserSecrets/
https://www.nuget.org/packages/Microsoft.Configuration.ConfigurationBuilders.Json/

Gateway Aggregation

Service 1 Service 2 Service 3

Service 1 Service 2 Service 3

Gateway

1“4

| Application

Application

Gateway Offloading

APl Gateway

>
@ Encrypted Traffic

Unencrypted Traffic

Il

Gateway Routing

Search Qrder Reviews Cart Checkout
: History : : .
Service . Service Service Service
Service
Gateway

|

Consumer

Health Endpoint Monitoring

S5L
CDN certificates

Application

Port 80 (HTTP)

443 (HTTPS
o endénint) Health checks

oy — (&)
Database @ Storage
Service A @

Agent

con ()
Application @ A

- @ b 200 (OK)

Response time: 50 ms
- Storage: 5 ms
- Database: 20 ms

On-premises,
cloud-hosted, or
third-party service

Azure Traffic Manager

= AACSDPFrontendWebTM - Configuration

Traffic Manager profile

0

@ Overview
B Activity log
um Access control (IAM)

r 4 Tags

¥ Diagnose and solve proble...

SETTINGS

& Configuration

@ Real user measurements

@ Traffic view
@ Endpoints

Properties

«

Routing method @

| Weighted

* DNS time to live (TTL) @
300

Endpoint monitor settings @

Protocol

seconds

| HTTP

* Port

| 80

* Path

| /Probe/Default.aspx

Fast endpoint failover settings

Probing interval @
30

* Tolerated number of failures @

Sidecar

Primary Application

Core functionality

Sidecar

Peripheral tasks such as:

» Platform abstraction
* Proxy to remove services

» Logging
« Configuration

Ambassador

Ambassador e ~N

Appllcat|0n Proxy to handle: P
o Retry 5 Remote service
Main functionality — Circuit breaking P

Monitoring

Security K /

Performance and Scalability

Cache-Aside

CQRS

Event Sourcing

Index Table

Materialized View

Priority Queue
Queue-Based Load Leveling
Sharding

Static Content Hosting
Throttling

Cache-Aside

1] g
L L] v
I | |
LI LI 1_‘ Data store
Cache
.)

1: Determine whether the item is currently
held in the cache.

2: If the item is not currently in the cache,
read the item from the data store.

3: Store a copy of the item in the cache.

public string GetData()

{
const string cacheKey = "MyData";
string result;
if (!memoryCache.TryGetValue(cacheKey, out result))
{
lock (datalock)
{
if (!memoryCache.TryGetValue(cacheKey, out result))
{
{
result = FetchDataFromDb();
memoryCache.Set(
key: cacheKey,
value: result,
options: new MemoryCacheEntryOptions()
{
AbsoluteExpirationRelativeToNow = TimeSpan.FromSeconds(5), Priority = CacheltemPriority.Normal
3
}
}
}
}
return result;
}

private readonly object dataLock = new object();

Static Content Hosting

r,l"

Application

Deliver pages
containing
links to files in
storage service

l

A

r‘
Container "myrasuun:es"
; ™
styles.ces I imagel.png
sitecode.js [image2.png
download.doc |, Image3.png
samples.zi Iﬂ
H P P i
N _
"
F'y

% Request files from storage service
+

Sharding —Lookup Strategy

Sharding logic:
Route requests for tenant 1 to shard ..

Route requests for tenant 55 to shard A

Application - Application
instance Route requests for tenant 227 to shard C instance
Route requests for tenant N to shard ...
R \‘ Query: Find
information information for
for tenant 55 tenant 227

s L /
EEE

Shard A Shard B

Shard N)

Sharding—Range Strategy

Sharding logic:
Map orders for October to shard A
Application Map orders for November to shard B Application
instance Map orders for December to shard C instance

orders placed
in Gctober

orders placed
in December

@ I"u"lap orders for ... to shard N
Query: Find \ EE /W;

Shard A Shard B

Drders are
stored in date/time
sequence in a shard

Sharding—Hash Strategy

Sharding logic uses hashing:

Application Hash(55) == shard B Application
instance instance

ﬁash{sm => shard N
Query: Find
infarmation
for tenant 56

Query: Find
information
for tenant 55

Shard A Shard B Shard C

Throttling 1/3

Resource
utilization
(] i
¥ N »
| | - .
T Y Maximum capacity
L]]
| | |
1 1
L]]
| | |
1 i
I - a
1 resolrce utilization

Feature C

Feature B

Feature A 1
L] 1
" []
1 [
L] 1
| | |
1 1
L] 1
. 4 P Time
T1 T2

Feature B is

suspended to allow

sufficient resources
for applications to use
Feature A and Feature C

Throttling— combined with Auto-Scaling 2/3

Resource c
utilization Throttling is rel.?xed
when autoscaling
A completes

Maximum capacity
after autoscaling

Autoscaling commences
at this point

Maximum capacity
befare autoscaling

- oy

soft limit of
resource utilization

All applications

P Time

—
—
—_—
Pt

System is
throttled while
autoscaling occurs

Throttling—Example 3/3

Custom domain
indicates the tenant

http://surveys.adatum.com

5 requests per second

http://surveys.fabrikam.com Ve

10 requests per second

http://surveys.contoso.com

Multi-tenant “Surveys”
application

Meter the

number of

requests per
second

Web role

150 requests per second

Error:
"Throttled”

Resiliency

Bulkhead

Circuit Breaker
Compensating Transaction
Health Endpoint Monitoring
Leader Election
Queue-Based Load Leveling
Retry

Scheduler Agent Supervisor

Retry

Application Hosted service
o S—
4—500
O——O—
< 500
3 —
<+—200

1: Application invokes operation on hosted service. The request fails, and the
service host responds with HTTP response code 500 (internal server error).

2: Application waits for a short interval and tries again. The request still fails with
HTTP response code 500.

3: Application waits for a longer interval and tries again. The request succeeds
with HTTP response code 200 (OK).

Retry—Azure Services

Service
Azure Storage

SQL Database with Entit
Framework

SQL Database with Entity

Framework Core

SQL Database with ADO.NET

Service Bus

Azure Redis Cache

Cosmos DB

Azure Search

Azure Active Directory

Service Fabric

Azure Event Hubs

Retry capabilities

Native in client

Native in client

Native in client

Polly

Native in client

Native in client

Native in service
Native in client

Native in ADAL library

Native in client

Native in client

Policy configuration

Programmatic

Programmatic

Programmatic

Declarative and programmatic

Programmatic

Programmatic

Non-configurable
Programmatic

Embeded into ADAL library

Programmatic

Programmatic

Scope

Client and individual operations

Global per AppDomain

Global per AppDomain

Single statements or blocks of
code

Namespace Manager, Messaging

Factory, and Client

Client

Global
Client

Internal

Client

Client

Telemetry features

TraceSource

None

None

Custom

ETW

TextWriter

TraceSource
ETW or Custom

None

None

None

https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-storage-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#sql-database-using-entity-framework-6-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#sql-database-using-entity-framework-core-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#sql-database-using-adonet-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#transient-fault-handling-with-polly
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#service-bus-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-redis-cache-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#cosmos-db-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-storage-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-active-directory-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#service-fabric-retry-guidelines
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-event-hubs-retry-guidelines

Bulkhead [prepazkal

connection pools that call individual services multiple clients calling a single service

Workload 1 Workload 2

Service instance Service instance

Service A

Connection Connection Connection : : Service instance

pool pool pool

Circuit Breaker

Closed

Success count

threshold reached

entry / reset failure counter

do / if operation succeeds
return result
else
increment failure counter
return failure

exit /

vy

Half-Open

Failure threshold
reached

G

https://qgithub.com/App-vNext/Polly

L.

entry / reset success counter

do / if operation succeeds

increment success counter

return result
else
return failure

exit /

Open

Timeout timer
expired
-+

Operation failed exit /
>

entry / start timeout timer

do / return failure

https://github.com/App-vNext/Polly

Data Management

Cache-Aside

CQRS

Event Sourcing

Index Table
Materialized View
Sharding

Static Content Hosting
Valet Key

Materialized View

Application

Application
data is the
source of truth

Materialized view
is read-only

Orderld Account

Itemid Materialized View

30
Orderld Itemid 30 Shirts 4
1 30 2 31 Pants 3

1 31 3
2 30 2

Event Sourcing

Presentation

Cart created
|
Item 1 added

|
Item 2 added

|
Item 1 removed

|
Shipping information added

l

T

o G
Cart ID _

Date CartID
Customer Item key
Address Item name
» Quantity
Materialized View

- Published events
Persisted =
events

Some options for
consuming events

External
systems and
applications

Query for

Event store

° P current state
Replayed events of entities

Compensating Transaction

Operation steps to create itinerary

Reserve room
at hotel H2

Reserve room
at hotel H1

Book seat an
flight F2

Book seat on
flight F1

Counter
operations
recorded for
each step in the
long-running
transaction

Cancel
seat on
flight F2

Compensating
ogic

Compensating transaction to cancel itinerary

Compensation
logic applies business
rules to counter-operations

CQRS - Command and Query Responsibility Segregation

CRUD CQRS

Presentation
Validation @
Validation
Commands Queries
'\6-6 e a4 (generate
Read model DTOs)

Domain logic
Updates — N4
Data »| Data Data persistence =~ ——» /
access < store ~
i Write maodel
Queries _//

Data store

Business logic

Presentation

Validation
Queries
Commands (generate

o DTOs)
Domain logic /
Data persistence

Read data
store

Write data
store

Valet Key

Request resource

Check validity
of request
and generate
key token

Applicati
pplication Return token

Access
resource
using
token

Target
resource

aacsrhmainstorage - Shared access signature

Storage account

0 « A shared access signature (SAS) is a URI that grants restricted access rights to Azure Storage resources. You can provide a shared access signature to clients
who should not be trusted with your storage account key but whom you wish to delegate access to certain storage account resources. By distributing a
shared access signature URI to these clients, you grant them access to a resource for a specified period of time.

B Overview

An account-level SAS can delegate access to multiple storage services (i.e. blob, file, queue, table). Note that stored access policies are currently not
B Activity log supported for an account-level SAS.

sh4 Access control (IAM) Learn more

& Tags Allowed services @ |

K Diagnose and solve proble... V| Blob [V| File [V] Queue [V] Table

Allowed resource types @
SETTINGS

v| Service |¥| Container |V¥| Object
Access keys
Allowed permissions @
Configurati
== Lonnguration V| Read [¥| Write [V/] Delete [V List [V] Add |V| Create [V| Update |¥]| Process

ﬂ Encryption
Start and expiry date/time @

&7 Shared access signature Start
2018-04-08 8:46:21
<& Firewalls and virtual networ... End
! Pproperties 2018-04-08 16:46:21
(UTC+02:00) --- Current Timezone --- v

& Locks
Allowed IP addresses @
= Automation script

Allowed protocols @

BLOB SERVICE
(® HTTPS only () HTTPS and HTTP

1 Containers
Signing key @
& CORS key1 v

@8 Custom domain X)
Generate SAS and connection string

Messaging

Competing Consumers
Pipes and Filters

Priority Queue
Queue-Based Load Leveling
Scheduler Agent Supervisor

Competing Consumers

Application instances -
generating messages

Consumer service
instance pool -
processing messages

Queue-Based Load Leveling 1/2

Tasks

Message queue Service

EEEEE) ——®)

Messages

processed
Requests received at a more
at a variable rate consistent rate

Wi

ks i

Queue-Based Load Leveling 2/2 - Example

Web role
Web role instances
instances

Concurrent web role
instances post requests
to a message
queue

Concurrent web role
instances send requests
to the Storage
service

Storage

Storage
service

service

Message queue

2

Consumer
tasks in a worker role
read messages from the
queue and forward them
on to the Storage service
at a controlled rate

- PO® @
&

Some
requests timeout
or fail if the Storage
service is too busy
handling existing requests

4

Priority Queue

Application sends messages to
the queue that handles messsages All messages in a queue
of the designated priority have the same priority

Message queue for priority 1 messages

Priority queue

Application Application

Application adds Messages are ordered by
a message to priarity in the gueue
the queue and
specifies a priority

Message queue for priority 2 messages

Message queue for priority 3 messages

-] —

i
OOOOOD

Pipes and Filters 1/3

Monolithic module processing
data from Source 1

C®

lIII Task A Task B

n # Transformed

TaskC TaskD data

Data from Source 1

Modules developed independently.

The code for Task A and Task B in the
module for processing data from source 1
is different for the code that performs the
same transformations in the module for
processing data from source 2.

\1

Business
logic

Monolithic module processing
data from Source 2

\ Transformed
\ data

Tﬂsl: A ask B

Data from Source 2

T:'ISII E Tasl: F

Pipes and Filters 2/3

Data from
Source 1
died (S d md (82 ma (& g (852 -+
Transformed
Task A Task B Task C Task D data
Components
reused in '
different
pipelines Business
logic
Transformed
data
Data from

Source 2
i (o # ma (€ # e (s # e (o #—r

Task A Task B Task E Task F

Pipes and Filters 3/3

PR aN

Data from
Source 1

—_—

Design and Implementation

Ambassador

Anti-Corruption Layer

Backends for Frontends

CQRS

Compute Resource Consolidation
External Configuration Store
Gateway Aggregation

Gateway Offloading

Gateway Routing
Leader Election

Pipes and Filters
Sidecar

Static Content Hosting
Strangler

Backends for Frontends

Desktop Mobile
Backgnd Backend Backend
Service Service Service

Compute Resource Consolidation

Strangler

Early migration

Strangler Facade

Later migration

VAN

Strangler Fagade

Migration complete

Modern

Legacy

Legacy

7N

Modern

Modern

Security

Federated Identity
Gatekeeper
Valet Key

Federated ldentity

ldentity
provider (1dP)
or security
token service
(STS)
Consumer o
authenticates
and requests Service trusts
token IdP or STS

STS returns token

Consumer] > Service

Consumer presents
token to service

Gatekeeper

Gatekeeper
exposes
endpoints
to clients
-+ | Gatekeeper
\, J
Gatekeeper

validates and
sanitizes requests

Gatekeeper may be

decoupled from
trusted host(s)

«

1

i

\,

Trusted host
or Keymaster

~

+ >

v

Trusted host
accesses service
and storage

\,

Services

>

Data

Reference

Blog —HAVIT Knowledge Base
http://knowledge-base.havit.cz/

Twitter
(@RobertHaken

YouTube

https://www.youtube.com/user/HAV

[CZ

http://knowledge-base.havit.cz/
https://twitter.com/RobertHaken
https://www.youtube.com/user/HAVITcz

